metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{ μ -1,4-bis[(diphenylphosphanyl)ethynyl]benzene- $\kappa^2 P:P'$ }bis[*trans*-diiodidopalladium(II)] chloroform trisolvate

Wing Yan Chan,^a Thomas Baumgartner,^a Alan J. Lough^a* and Ian Manners^b

^aDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, and ^bSchool of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, England.

Correspondence e-mail: alough@chem.utoronto.ca

Received 18 September 2007; accepted 20 September 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.014 Å; disorder in solvent or counterion; R factor = 0.056; wR factor = 0.112; data-to-parameter ratio = 16.2.

The title compound, $[Pd_2I_4(C_{34}H_{24}P_2)_2]\cdot 3CHCl_3$, was obtained from the direct reaction of PdI₂ with 1,4-bis[(diphenylphosphanyl)ethynyl]benzene. The dimer complex molecule is centrosymmetric, with each Pd^{II} atom in a slightly distorted square-planar coordination geometry.

Related literature

Metal-containing rings are currently of interest as polymer precursors (Nguyen *et al.*, 1999; Herbert *et al.*, 2007). We have also determined the structure of a triclinic modification of the title compound (Baumgartner *et al.*, 2007). A related complex containing Pt^{II} atoms and chloride ligands was found to form a triangle (Baumgartner *et al.*, 2002).

Experimental

Crystal data

 $[Pd_{2}I_{4}(C_{34}H_{24}P_{2})_{2}]\cdot 3CHCl_{3}$ $M_{r} = 2067.45$ Monoclinic, C2/c a = 20.8960 (9) Å b = 9.5920 (5) Å c = 38.832 (2) Å $\beta = 99.804$ (3)°

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{min} = 0.827, T_{max} = 0.958$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.112$ S = 1.016672 reflections 411 parameters $V = 7669.6 (7) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 2.52 \text{ mm}^{-1}$ T = 150 (1) K $0.14 \times 0.06 \times 0.02 \text{ mm}$

19576 measured reflections 6672 independent reflections 3732 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.086$

 $\begin{array}{l} \mbox{4 restraints} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 1.06 \mbox{ e } \mbox{Å}^{-3} \\ \Delta \rho_{min} = -0.91 \mbox{ e } \mbox{Å}^{-3} \end{array}$

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2001); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors acknowledge NSERC Canada and the University of Toronto for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2515).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Baumgartner, T., Huynh, K., Schleidt, S., Lough, A. J. & Manners, I. (2002). *Chem. Eur. J.* 8, 4622–4632.
- Baumgartner, T., Huynh, K., Schleidt, S., Lough, A. J. & Manners, I. (2007). Private communication to the Cambridge Structural Database, deposition number CCDC 661295.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Herbert, D. E., Mayer, U. F. J. & Manners, I. (2007). Angew. Chem. Int. Ed. 46, 5060–5081.

Nguyen, P., Gomez-Elipe, P. & Manners, I. (1999). *Chem. Rev.* 99, 1515–1548. Nonius (2002). *COLLECT*. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m2886 [doi:10.1107/S160053680704620X]

Bis{ μ -1,4-bis[(diphenylphosphanyl)ethynyl]benzene- $\kappa^2 P:P'$ }bis[*trans*-diiodidopalladium(II)] chloroform trisolvate

W. Y. Chan, T. Baumgartner, A. J. Lough and I. Manners

Comment

The bidentate phosphane ligand used in this work has been previously found to form a triangle when reacted with $PtCl_2$ (Baumgartner *et al.*, 2002). In this work, we report the formation of a rectangle using PdI_2 as the metal source. The Pd centres in the title compound exhibit a slightly distorted square planar geometry, where the P—Pd—I angles deviate from 90° by less than 3°.

Experimental

PdI₂ (11 mg, 0.031 mmol) and 1,4-bis-[(diphenylphosphanyl)-ethynyl]-benzene (15 mg, 0.030 mmol) was added to CDCl₃ (0.6 ml). Crystals of the title compound was obtained after 2 days.

Refinement

All hydrogen atoms were placed in calculated positions with C—H = 0.95 or 1.00 Å and were included in the refinement in the riding-motion approximation with $U_{iso}(H) = 1.2U_{eq}(C)$. One of the CHCl₃ solvent molecules is disordered over a twofold rotation axis. For each CHCl₃ the three C—Cl distances were constrained to be equal with a standard uncertainty of 0.002Å [see: SADI command in *SHELXTL* (Sheldrick, 2001)]

Figures

Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level. Neither the chloroform solvent molecules nor H atoms are shown. Atoms labeled with the suffix 'a' are related by the symmetry operator (-x + 3/2, -y + 1/2, -z + 1).

 $Bis{\mu-1,4-bis[(diphenylphosphanyl)ethynyl]benzene-\kappa^2P:P'}bis[trans-diiodidopalladium(II)] chloroform trisolvate$

 Crystal data

 $[Pd_2I_4(C_{34}H_{24}P_2)_2] \cdot 3CHCl_3$
 $M_r = 2067.45$
 $M_r = 0.71073 \text{ Å}$

 Hall symbol: -C 2yc

 Cell parameters from 19576 reflections

a = 20.8960 (9) Å b = 9.5920 (5) Å c = 38.832 (2) Å $\beta = 99.804 (3)^{\circ}$ $V = 7669.6 (7) \text{ Å}^{3}$ Z = 4

Data collection

Nonius KappaCCD diffractometer	6672 independent reflections
Radiation source: fine-focus sealed tube	3732 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.086$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 150(2) K	$\theta_{\min} = 2.6^{\circ}$
ϕ scans and ω scans with κ offsets	$h = -24 \rightarrow 24$
Absorption correction: multi-scan (SORTAV; Blessing, 1995)	$k = -11 \rightarrow 11$
$T_{\min} = 0.827, \ T_{\max} = 0.958$	$l = -45 \rightarrow 46$
19576 measured reflections	

 $\theta = 2.6-25.0^{\circ}$ $\mu = 2.52 \text{ mm}^{-1}$

T = 150 (1) K

Needle, colourless

 $0.14 \times 0.06 \times 0.02 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.024P)^2 + 42.7375P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.002$
6672 reflections	$\Delta \rho_{max} = 1.06 \text{ e } \text{\AA}^{-3}$
411 parameters	$\Delta \rho_{min} = -0.91 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Pd1	0.67135 (3)	0.12571 (7)	0.633756 (18)	0.0337 (2)	
I1	0.72848 (3)	-0.04250 (7)	0.595490 (18)	0.0489 (2)	
I2	0.61881 (3)	0.24764 (6)	0.681462 (16)	0.04193 (19)	
P1	0.57291 (10)	0.0364 (2)	0.60639 (6)	0.0338 (6)	
P2	0.77171 (11)	0.2254 (2)	0.65447 (6)	0.0363 (6)	
C1	0.5693 (4)	0.0548 (9)	0.5615 (3)	0.044 (3)	
C2	0.5810 (4)	0.0764 (9)	0.5327 (2)	0.040 (2)	
C3	0.6019 (4)	0.1060 (10)	0.5002 (2)	0.040 (2)	
C4	0.6216 (5)	0.2398 (11)	0.4932 (3)	0.061 (3)	
H4A	0.6192	0.3123	0.5096	0.073*	
C5	0.6448 (5)	0.2686 (11)	0.4626 (3)	0.059 (3)	
H5A	0.6577	0.3608	0.4580	0.071*	
C6	0.6491 (4)	0.1649 (10)	0.4388 (2)	0.043 (2)	
C7	0.6299 (4)	0.0311 (9)	0.4456 (2)	0.043 (2)	
H7A	0.6329	-0.0411	0.4291	0.051*	
C8	0.6064 (4)	0.0008 (10)	0.4760 (2)	0.043 (2)	
H8A	0.5933	-0.0915	0.4803	0.052*	
С9	0.6710 (4)	0.1963 (9)	0.4067 (3)	0.045 (3)	
C10	0.6902 (4)	0.2313 (9)	0.3808 (2)	0.039 (2)	
C11	0.5605 (4)	-0.1473 (9)	0.6139 (2)	0.034 (2)	
C12	0.5926 (4)	-0.2073 (10)	0.6446 (2)	0.045 (3)	
H12A	0.6227	-0.1541	0.6604	0.054*	
C13	0.5805 (4)	-0.3451 (10)	0.6522 (3)	0.047 (3)	
H13A	0.6024	-0.3867	0.6731	0.056*	
C14	0.5369 (5)	-0.4205 (10)	0.6294 (3)	0.053 (3)	
H14A	0.5283	-0.5145	0.6348	0.063*	
C15	0.5047 (5)	-0.3619 (11)	0.5983 (3)	0.064 (3)	
H15A	0.4745	-0.4155	0.5826	0.077*	
C16	0.5172 (4)	-0.2262 (9)	0.5908 (3)	0.044 (3)	
H16A	0.4960	-0.1858	0.5695	0.053*	
C21	0.4980 (4)	0.1166 (9)	0.6141 (2)	0.034 (2)	
C22	0.4672 (4)	0.0657 (10)	0.6404 (2)	0.045 (3)	
H22A	0.4846	-0.0130	0.6536	0.054*	
C23	0.4114 (4)	0.1278 (11)	0.6476 (3)	0.051 (3)	
H23A	0.3904	0.0911	0.6655	0.061*	
C24	0.3862 (5)	0.2435 (11)	0.6288 (3)	0.061 (3)	
H24A	0.3479	0.2864	0.6339	0.073*	
C25	0.4161 (4)	0.2965 (9)	0.6030 (3)	0.057 (3)	
H25A	0.3988	0.3763	0.5903	0.069*	
C26	0.4718 (4)	0.2337 (9)	0.5956 (2)	0.045 (2)	
H26A	0.4924	0.2708	0.5776	0.053*	
C31	0.7750 (4)	0.3889 (10)	0.6778 (3)	0.041 (2)	
C32	0.8069 (5)	0.4039 (11)	0.7117 (3)	0.055 (3)	
H32A	0.8268	0.3249	0.7238	0.066*	
C33	0.8103 (5)	0.5302 (14)	0.7282 (3)	0.076 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H33A	0.8324	0.5386	0.7517	0.092*	
C34	0.7823 (5)	0.6428 (14)	0.7111 (4)	0.080 (4)	
H34A	0.7843	0.7297	0.7230	0.096*	
C35	0.7511 (5)	0.6362 (12)	0.6771 (4)	0.068 (4)	
H35A	0.7321	0.7168	0.6654	0.082*	
C36	0.7483 (4)	0.5061 (11)	0.6601 (3)	0.053 (3)	
H36A	0.7279	0.4988	0.6364	0.063*	
C41	0.8270 (4)	0.1125 (9)	0.6827 (2)	0.038 (2)	
C42	0.8062 (5)	0.0596 (10)	0.7121 (3)	0.056 (3)	
H42A	0.7633	0.0772	0.7160	0.067*	
C43	0.8482 (6)	-0.0186 (11)	0.7354 (3)	0.067 (3)	
H43A	0.8343	-0.0508	0.7561	0.080*	
C44	0.9086 (6)	-0.0514 (11)	0.7300 (3)	0.071 (3)	
H44A	0.9364	-0.1086	0.7461	0.085*	
C45	0.9286 (5)	0.0010 (11)	0.7005 (3)	0.066 (3)	
H45A	0.9710	-0.0205	0.6963	0.080*	
C46	0.8881 (5)	0.0846 (10)	0.6767 (3)	0.053 (3)	
H46A	0.9029	0.1214	0.6567	0.064*	
Cl1	0.56608 (16)	0.6246 (3)	0.51296 (10)	0.0983 (11)	
C12	0.7013 (2)	0.6345 (6)	0.5168 (2)	0.255 (4)	
C13	0.6484 (3)	0.4900 (7)	0.56931 (13)	0.206 (3)	
C1S	0.63949 (19)	0.6309 (12)	0.5412 (2)	0.150 (8)	
H1SA	0.6412	0.7185	0.5553	0.180*	
C15	1.03790 (18)	-0.6728 (4)	0.72255 (9)	0.1068 (12)	
Cl4	1.0000	-0.4169 (5)	0.7500	0.125 (2)	
C2S	0.9795 (9)	-0.5888 (12)	0.7413 (6)	0.110 (13)	0.50
H2SA	0.9404	-0.5888	0.7242	0.132*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.0336 (4)	0.0372 (4)	0.0304 (4)	-0.0009 (3)	0.0059 (3)	-0.0015 (4)
I1	0.0401 (4)	0.0537 (4)	0.0545 (5)	0.0011 (3)	0.0122 (3)	-0.0148 (4)
I2	0.0428 (4)	0.0494 (4)	0.0349 (4)	-0.0031 (3)	0.0102 (3)	-0.0075 (3)
P1	0.0339 (13)	0.0402 (15)	0.0282 (15)	-0.0027 (11)	0.0075 (11)	-0.0005 (12)
P2	0.0398 (14)	0.0423 (16)	0.0275 (14)	-0.0021 (12)	0.0076 (12)	0.0013 (12)
C1	0.045 (6)	0.042 (6)	0.048 (7)	-0.003 (5)	0.015 (5)	-0.009 (5)
C2	0.043 (6)	0.041 (6)	0.037 (6)	-0.012 (5)	0.009 (5)	0.003 (5)
C3	0.051 (6)	0.044 (6)	0.027 (6)	-0.006 (5)	0.012 (5)	0.001 (5)
C4	0.101 (9)	0.050(7)	0.036 (7)	-0.014 (6)	0.024 (6)	-0.004 (5)
C5	0.081 (8)	0.058 (7)	0.044 (7)	-0.025 (6)	0.023 (6)	-0.002 (6)
C6	0.050 (6)	0.044 (6)	0.036 (6)	-0.009 (5)	0.009 (5)	-0.001 (5)
C7	0.051 (6)	0.044 (6)	0.033 (6)	-0.014 (5)	0.009 (5)	-0.001 (5)
C8	0.047 (6)	0.045 (6)	0.038 (6)	-0.008 (5)	0.010 (5)	0.007 (5)
С9	0.039 (6)	0.051 (6)	0.045 (7)	-0.012 (5)	0.009 (5)	0.006 (5)
C10	0.037 (5)	0.040 (6)	0.042 (6)	-0.016 (5)	0.010 (5)	-0.001 (5)
C11	0.032 (5)	0.041 (6)	0.033 (6)	-0.002 (5)	0.012 (5)	-0.003 (5)
C12	0.054 (6)	0.048 (7)	0.036 (7)	-0.011 (5)	0.012 (5)	0.000 (5)

C13	0.038 (6)	0.047 (7)	0.052 (7)	0.000 (5)	0.002 (5)	0.004 (6)
C14	0.062 (7)	0.033 (6)	0.065 (8)	-0.005 (5)	0.018 (6)	0.012 (6)
C15	0.068 (7)	0.043 (7)	0.079 (10)	-0.021 (6)	0.007 (7)	-0.009(7)
C16	0.043 (6)	0.033 (6)	0.054 (7)	-0.009 (5)	0.000 (5)	0.001 (5)
C21	0.034 (5)	0.034 (6)	0.035 (6)	0.000 (4)	0.006 (5)	0.001 (5)
C22	0.045 (6)	0.055 (6)	0.040 (6)	-0.002 (5)	0.023 (5)	-0.004 (5)
C23	0.050 (6)	0.060 (7)	0.043 (7)	-0.003 (6)	0.009 (5)	-0.005 (6)
C24	0.038 (6)	0.056 (7)	0.089 (9)	-0.005 (6)	0.012 (6)	-0.018 (7)
C25	0.035 (6)	0.034 (6)	0.102 (10)	0.006 (5)	0.006 (6)	0.006 (6)
C26	0.044 (6)	0.039 (6)	0.051 (7)	-0.009 (5)	0.010 (5)	-0.001 (5)
C31	0.040 (6)	0.054 (7)	0.029 (6)	-0.014 (5)	0.003 (5)	0.001 (5)
C32	0.059 (7)	0.048 (7)	0.061 (8)	0.000 (5)	0.017 (6)	-0.014 (6)
C33	0.067 (8)	0.091 (10)	0.071 (10)	0.005 (8)	0.012 (7)	-0.029 (9)
C34	0.047 (8)	0.072 (10)	0.126 (14)	-0.017 (7)	0.026 (8)	-0.049 (10)
C35	0.047 (7)	0.052 (8)	0.111 (12)	-0.007 (6)	0.025 (8)	0.002 (8)
C36	0.046 (6)	0.053 (7)	0.059 (8)	-0.011 (6)	0.006 (6)	0.001 (6)
C41	0.036 (5)	0.039 (6)	0.037 (6)	-0.001 (5)	-0.001 (5)	0.001 (5)
C42	0.052 (6)	0.064 (7)	0.049 (7)	-0.005 (6)	0.004 (6)	0.024 (6)
C43	0.071 (8)	0.064 (8)	0.056 (8)	-0.009(7)	-0.017 (7)	0.032 (6)
C44	0.064 (8)	0.058 (8)	0.080 (10)	0.004 (7)	-0.021 (7)	0.023 (7)
C45	0.050 (7)	0.074 (9)	0.073 (9)	0.026 (6)	0.005 (7)	0.000 (7)
C46	0.049 (6)	0.062 (7)	0.048 (7)	0.008 (6)	0.005 (6)	-0.002 (6)
Cl1	0.106 (3)	0.084 (2)	0.103 (3)	-0.009 (2)	0.012 (2)	-0.011 (2)
Cl2	0.114 (4)	0.210 (6)	0.467 (11)	-0.044 (4)	0.127 (5)	-0.152 (7)
Cl3	0.205 (5)	0.282 (7)	0.101 (4)	0.136 (5)	-0.064 (4)	-0.085 (4)
C1S	0.059 (9)	0.165 (16)	0.21 (2)	-0.002 (10)	-0.009 (11)	-0.137 (15)
C15	0.127 (3)	0.115 (3)	0.084 (3)	0.009 (2)	0.033 (2)	-0.017 (2)
Cl4	0.150 (5)	0.084 (4)	0.159 (6)	0.000	0.081 (4)	0.000
C2S	0.042 (18)	0.12 (2)	0.18 (4)	0.011 (13)	0.05 (2)	0.10(2)

Geometric parameters (Å, °)

Pd1—P1	2.313 (2)	C23—C24	1.383 (13)
Pd1—P2	2.321 (2)	С23—Н23А	0.9500
Pd1—I2	2.5880 (9)	C24—C25	1.365 (13)
Pd1—I1	2.6155 (9)	C24—H24A	0.9500
P1—C1	1.743 (10)	C25—C26	1.384 (11)
P1-C11	1.812 (9)	C25—H25A	0.9500
P1—C21	1.813 (8)	C26—H26A	0.9500
P2—C10 ⁱ	1.749 (9)	C31—C32	1.379 (12)
P2—C31	1.806 (10)	C31—C36	1.384 (12)
P2—C41	1.809 (9)	C32—C33	1.367 (13)
C1—C2	1.202 (11)	C32—H32A	0.9500
C2—C3	1.434 (12)	C33—C34	1.349 (16)
C3—C4	1.388 (12)	С33—Н33А	0.9500
C3—C8	1.393 (11)	C34—C35	1.370 (15)
C4—C5	1.388 (12)	C34—H34A	0.9500
C4—H4A	0.9500	C35—C36	1.408 (13)
C5—C6	1.371 (12)	C35—H35A	0.9500

С5—Н5А	0.9500	C36—H36A	0.9500
C6—C7	1.384 (11)	C41—C46	1.364 (11)
С6—С9	1.430 (12)	C41—C42	1.386 (12)
С7—С8	1.384 (11)	C42—C43	1.373 (12)
С7—Н7А	0.9500	C42—H42A	0.9500
C8—H8A	0.9500	C43—C44	1.351 (13)
C9—C10	1.191 (11)	C43—H43A	0.9500
C10—P2 ⁱ	1.749 (9)	C44—C45	1.381 (14)
C11—C16	1.386 (11)	C44—H44A	0.9500
C11—C12	1.390 (11)	C45—C46	1.396 (13)
C12—C13	1.386 (12)	C45—H45A	0.9500
C12—H12A	0.9500	C46—H46A	0.9500
C13—C14	1.363 (12)	Cl1—C1S	1.728 (5)
C13—H13A	0.9500	Cl2—C18	1.728 (5)
C14—C15	1.396 (13)	Cl3—C1S	1.728 (5)
C14—H14A	0.9500	C1S—H1SA	1.0000
C15—C16	1.370 (12)	Cl5—C2S ⁱⁱ	1.71 (2)
C15—H15A	0.9500	C15—C28	1.723 (11)
C16—H16A	0.9500	Cl4—C2S	1.723 (11)
C21—C22	1.384 (11)	Cl4—C2S ⁱⁱ	1.723 (11)
C21—C26	1.395 (11)	C2S—C2S ⁱⁱ	1.00 (4)
C22—C23	1.379 (11)	C2S—Cl5 ⁱⁱ	1.71 (2)
C22—H22A	0.9500	C2S—H2SA	0.9600
P1—Pd1—P2	172.93 (9)	C22—C23—H23A	120.1
P1—Pd1—I2	92.51 (6)	C24—C23—H23A	120.1
P2—Pd1—I2	91.96 (6)	C25—C24—C23	120.3 (9)
P1—Pd1—I1	88.09 (6)	C25—C24—H24A	119.8
P2—Pd1—I1	88.75 (6)	C23—C24—H24A	119.8
I2—Pd1—I1	167.36 (4)	C24—C25—C26	119.9 (10)
C1—P1—C11	106.1 (4)	C24—C25—H25A	120.1
C1—P1—C21	103.4 (4)	C26—C25—H25A	120.1
C11—P1—C21	103.6 (4)	C25—C26—C21	120.8 (9)
C1—P1—Pd1	107.8 (3)	C25—C26—H26A	119.6
C11—P1—Pd1	115.3 (3)	C21—C26—H26A	119.6
C21—P1—Pd1	119.5 (3)	C32—C31—C36	118.5 (10)
C10 ⁱ —P2—C31	101.7 (4)	C32—C31—P2	122.7 (8)
C10 ⁱ —P2—C41	106.7 (4)	C36—C31—P2	118.6 (8)
C31—P2—C41	104.5 (4)	C33—C32—C31	121.3 (11)
C10 ⁱ —P2—Pd1	109.3 (3)	C33—C32—H32A	119.4
C31—P2—Pd1	119.1 (3)	C31—C32—H32A	119.4
C41—P2—Pd1	114.2 (3)	C34—C33—C32	119.6 (12)
C2—C1—P1	165.4 (9)	С34—С33—Н33А	120.2
C1—C2—C3	173.7 (10)	С32—С33—Н33А	120.2
C4—C3—C8	118.9 (8)	C33—C34—C35	122.2 (13)
C4—C3—C2	120.0 (8)	C33—C34—H34A	118.9
C8—C3—C2	121.1 (8)	C35—C34—H34A	118.9
C3—C4—C5	120.6 (9)	C34—C35—C36	117.9 (12)

C3—C4—H4A	119.7	С34—С35—Н35А	121.0
С5—С4—Н4А	119.7	С36—С35—Н35А	121.0
C6—C5—C4	120.4 (9)	C31—C36—C35	120.4 (10)
С6—С5—Н5А	119.8	C31—C36—H36A	119.8
С4—С5—Н5А	119.8	С35—С36—Н36А	119.8
C5—C6—C7	119.3 (9)	C46—C41—C42	120.2 (9)
C5—C6—C9	120.1 (9)	C46—C41—P2	122.3 (7)
С7—С6—С9	120.5 (9)	C42—C41—P2	117.4 (7)
C6—C7—C8	120.9 (9)	C43—C42—C41	119.3 (10)
С6—С7—Н7А	119.5	C43—C42—H42A	120.3
С8—С7—Н7А	119.5	C41—C42—H42A	120.3
C7—C8—C3	119.8 (8)	C44—C43—C42	122.2 (11)
С7—С8—Н8А	120.1	C44—C43—H43A	118.9
С3—С8—Н8А	120.1	C42—C43—H43A	118.9
C10—C9—C6	175.6 (10)	C43—C44—C45	117.9 (10)
C9—C10—P2 ⁱ	172.5 (9)	C43—C44—H44A	121.0
C16—C11—C12	119.8 (8)	C45—C44—H44A	121.0
C16—C11—P1	121.5 (7)	C44—C45—C46	121.6 (10)
C12—C11—P1	118.7 (7)	C44—C45—H45A	119.2
C13—C12—C11	119.9 (9)	C46—C45—H45A	119.2
C13—C12—H12A	120.1	C41—C46—C45	118.7 (10)
C11—C12—H12A	120.1	C41—C46—H46A	120.6
C14—C13—C12	119.6 (10)	C45—C46—H46A	120.6
C14—C13—H13A	120.2	Cl2—C1S—Cl1	108.6 (5)
С12—С13—Н13А	120.2	Cl2—C1S—Cl3	110.6 (6)
C13—C14—C15	121.1 (9)	Cl1—C1S—Cl3	111.2 (5)
C13—C14—H14A	119.4	Cl2—C1S—H1SA	108.8
C15—C14—H14A	119.4	Cl1—C1S—H1SA	108.8
C16—C15—C14	119.1 (10)	Cl3—C1S—H1SA	108.8
C16—C15—H15A	120.5	C2S ⁱⁱ —C15—C2S	33.7 (14)
C14—C15—H15A	120.5	C2S-Cl4-C2S ⁱⁱ	33.6 (15)
C15—C16—C11	120.5 (10)	C2S ⁱⁱ —C2S—Cl5 ⁱⁱ	74 (2)
C15—C16—H16A	119.8	C2S ⁱⁱ —C2S—Cl4	73.2 (7)
C11—C16—H16A	119.8	Cl5 ⁱⁱ —C2S—Cl4	111.7 (10)
C22—C21—C26	118.2 (8)	C2S ⁱⁱ —C2S—Cl5	72.5 (17)
C22—C21—P1	119.7 (7)	Cl5 ⁱⁱ —C2S—Cl5	113.0 (10)
C26—C21—P1	122.0 (7)	Cl4—C2S—Cl5	111.2 (10)
C23—C22—C21	121.0 (9)	C2S ⁱⁱ —C2S—H2SA	179.2
С23—С22—Н22А	119.5	Cl5 ⁱⁱ —C2S—H2SA	106.9
C21—C22—H22A	119.5	Cl4—C2S—H2SA	106.8
C22—C23—C24	119.8 (9)	Cl5—C2S—H2SA	106.8

Symmetry codes: (i) -x+3/2, -y+1/2, -z+1; (ii) -x+2, y, -z+3/2.

